(lS,29,35,4R,IS ,8R ,9R ,105)-3,4:S,lO-Bis(iso p ropylidenedioxy)tricyclo[6.2.2.0]dodeca-5,11-diene (5) from **4a.** To a solution of **4a (0.119** g, **0.257** mol) in toluene **(2.5 mL)** was added Bu₃SnH (0.600 g, 2.06 mmol) followed by AIBN (0.042 g, **0.256** mmol), and the solution was refluxed under an argon atmosphere for **26** h. The reaction mixture was concentrated in vacuo, and the residue was purified by flash chromatography on **silica gel eluting with 15% EtOAc/hexanes to provide pure 5 as** white crystals (0.071 g, 0.233 mmol, 91% yield): mp 150-151 °C; IH *NMR* **6 5.96 (2** H, m), **5.58 (1** H, ddd, **J** = **10.2,3.6,1.4), 5.48 (1** H, ddd, **J** = **10.2,3.0,1.5), 4.30 (1** H, dd, **J** = **7.3,3.1), 4.25 (1** H, dd, **J** = **7.3,3.0), 4.18 (1** H, ddd, **J** = **4.9,3.6,1.4), 4.13 (1** H, br d, J ⁼**4.9), 2.85 (2** H, m), **2.34 (1** H, m), **2.20 (1** H, br d, J ⁼ **9.0), 1.33 (3** H, **a), 1.31 (3** H, **a), 1.29 (3** H, **s), 1.26 (3** H, *8);* 13C NMR 6 **132.4** (CH), **129.3** (CH), **128.8** (CH), **126.6** (CH), **108.6** (C), **107.6 (C), 78.6** (CH), **78.4** (CH), **77.6** (CH), **70.9** (CH), **41.0 25.4** (CH₃), **25.0** (CH₃). Anal. Calcd for C₁₈H₂₄O₄: C, 71.03; H, **7.95.** Found: **C, 70.89;** H, **8.02.** (CH), **40.7** (CH), **34.3** (CH), **33.1** (CH), **28.3** (CH3), **26.8** (CH3),

(1R \$5 ,IS ,6S ,7S *,8S* **,9S ,lOR)-4-Chloro-5,6:9,lO-bis(isopropylidenedioxy)tricyc1o[6.2.2.0]dodeca-3,1 l-diene (7) from 4b.** To **a** solution of **4b (72.3** mg, **0.194** mmol) and AIBN (cat. quantity) in toluene **(3 mL) was** added Bu3SnH **(225 mg, 0.775** mmol), and the reaction mixture was refluxed under an argon atmosphere for **3** h. The mixture waa concentrated in vacuo, and the residue was purified by column chromatography on silica gel eluting with *20%* EtoAc/hexanea to **afford** pure **7 as** white *crystals (c* **0.6, CHC13); IR** *v* **3040,2981, 1664, 1371, 1208,1062,876** cm-I; ¹H NMR δ 6.03 (2 H, m), 5.71 (1 H, d, $J = 4.3$), 4.27 (1 H, m), **4.14 (1** H, d, **J** = **4.6), 2.86 (2** H, m), **2.53 (1** H, m), **2.23 (1** H, d, **J** = **9.0), 1.37 (3** H, **a), 1.34 (3** H, **e), 1.29 (3** H, **s), 1.25 (3** H, *8);* **13C** *NMR* **6 132.5** (CH), **131.3** (CH), **128.8 (C), 127.9** (CH), **108.9 (C), 108.5 (C), 79.5** (CH), **78.6** (CH), **77.9** (CH), **72.7** (CH), **41.2** 25.4 **(CH₃)**, 25.0 **(CH₃)**. Anal. Calcd for C₁₈H₂₃ClO₄: C, 63.81; H, 6.84. Found: C, 63.84; H, 6.89. $(65.5 \text{ mg}, 0.194 \text{ mmol}, 100\% \text{ yield})$: mp $148-150 \text{ °C}$; $[\alpha]_{\text{D}} = +114 \text{ °C}$ (CH), **40.4** (CH), **35.7** (CH), **34.3** (CH), **27.8** (CH3), **26.6** (CH3),

(1s ,2S ,3S ,4R ,7S ,8R ,9R ,105)-3,4:9,10-Bis(isopropylidenedio~)t~cyc1o[6.2.2.0]dodeca-5,1 l-diene (5) from 4b. A solution of **4b** *(80 mg,* **0.214** "01) in absolute ethanol **(2 ml)** was heated to reflux, and finely divided sodium metal **(130** mg, **5.65** mmol) was added in *ca.* 10-mg portions over a period of **1.25** h while monitoring the progress of the reaction by TLC. When the reaction was complete, the mixture was cooled to rt and quenched with H₂O (0.5 mL). The ethanol was removed in vacuo, and the aqueous mixture was extracted with CH_2Cl_2 (4 \times 8 mL). The combined organic layers were washed with H_2O **(1 mL),** dried over MgS04, fitered, and concentrated in vacuo (1 mL), dried over MgSO₄, filtered, and concentrated in vacuo
to provide 66 mg of crude brown oil. Flash chromatography
through a small pipet eluting with a solvent gradient of $0 \rightarrow 25\%$
 \sim 25% EtOAc/hexanes provided pure 5 as a white solid $(31 \text{ mg}, 0.101)$ mol, 48% yield). The **spectral data** were identical to that shown for **5** above.

(1s ,2S ,3S ,4R ,7S ,8R ,9R ,1OS)-9,lO-(Isopropylidenedioxy)tricyclo[6.2.2.0]5,ll-diene-3,4-diol(6). A solution of 5 (28 mg, 0.092 mmol) in glacial acetic acid (1 mL) and H_2O **(0.2 mL)** was stirred at rt for **18** h. The solution was saturated with NaCl and extracted with EtOAc **(4 X 2 mL).** The combined organic layers were washed with saturated $NAHCO₃$ (3 \times 1 mL), dried over *MgS04,* filtered, and concentrated in vacuo. The resulting residue **was** recrystallized from a mixture of EtOAc/ hexanes to provide the pure diol **(6) as** a white crystalline solid $(15 \text{ mg}, 0.0567 \text{ mmol}, 63\% \text{ yield}): \text{ mp } 123\text{--}125 \text{ °C}; [\alpha]_{\text{D}} = -78^{\circ}$ synthesized from $4a$ (c 0.72, CHCl₃), $[\alpha]_D = -83^\circ$ synthesized from **4b** (c **0.93,** CHCQ; **IR** (CHCIJ *Y* **3580,3440,3005,2960,2920,1380, 1205,1065 an-';** 'H NMR 6 **6.05 (2** H, m), **5.72 (2** H, m), **4.26 (2** H, m), **4.04 (1** H, br **e), 3.54 (1** H, br **s), 3.05 (1** H, m), **2.84 (1** H, m), **2.35 (1** H, br d, J ⁼**8.8),2.01 (3** H, m), **1.31 (3** H, **s), 1.26 (3** H, 8); '% **NMR 6 134.1** (CHI, **130.8** (CH), **130.7** (CH), **127.3** (CH), **108.6 (C), 78.7 (CH), 78.6** (CH), **71.7** (CH), **66.6** (CH), **40.4** (CH), **38.5** (CH), **38.0** (CH), **35.1** (CH), **25.4** (CH,), **25.0** (CH3).

Acknowledgment. We are grateful to the Jeffress Trust Fund and the National Institutes of Health for support of **this** work. We **also** thank **Dr.** Christie A. Boros for her assistance in performing the microbial oxidations.

Note Added in Proof. **A** paper describing the dimer 4a appeared while this manuscript was being processed Ley, **S.** V.; Redgrave, A. J.; Taylor, **S.** C.; Abmed, **S.;** Ribbons, D. W. Synlett **1991, 741.**

Registry No. 2a, 13079245-9; 3a, 13oeSs7S-9; 3b, 12766646-2; la, 137769-14-3; ab, 137792-30-4; 5,137769-15-4; 6,137792-31-5; 7, 137769-16-5.

Supplementary **Material Available:** X-ray crystallographic data for compound **4a** and 'H and **13C** *NMR* spectra for compounds **4a, 4b, 5,6,** and **7 (17** pages). Ordering information is given on any current masthead page.

Reductive Cleavage of *tert* -Butyldimethylsilyl Ethers by Diisobutylaluminum Hydride

E. J. Corey+ and Graham B. Jones

Department *of* Chemistry, Harvard University, Cambridge, Massachueetts *02138* ,

Received September *30,1991*

The utility of the tert-butyldimethylsilyl (Tbs) group for the protection of hydroxyl groups^{1,2} has been enhanced by the availability of diverse methods for its introduction^{1,3} and removal (especially fluoride ion,¹ aqueous acid,^{1,2} and aqueous $HF-CH₃CN⁴$. We report herein a new method for the cleavage of Tbs ethers under reductive and nearneutral conditions using diisobutylaluminum hydride (DIBAL-H). In the original research on protection of the hydroxyl function by Tba it was found that the conversion of a γ -lactone to the corresponding lactol could be carried out selectively with DIBAL-H (1.2 equiv) in toluene at **-78** ^oC in the presence of the Tbs ether function which remained unchanged,' and many instances of such reactions are now known. Nonetheless, Tbs ethers react with DI-BAL-H in methylene chloride solution at 23 °C in 1-2 h to yield desilylated alcohols (1) according to the following equation.

 $ROSiMe₂t-Bu + i-Bu₂AlH \rightarrow$

1

$$
ROAli-Bu_2 + HSiMe_2t-Bu
$$

3 2

The formation of tert-butyldimethylsilane **(2)** was established by 500-MHz 'H NMR analysis of the cleavage reaction in carbon tetrachloride or deuteriochloroform solution which revealed the simultaneous development of peaks due to **Z5** and 3. The cleavage reaction was clean and complete with a series of test cases which gave pure alcohols simply by extractive isolation in the indicated **isolated** yields (in parentheses): l-hexanol(93%), benzyl alcohol (91%), phenol (84%), trans-4-tert-butylcyclohexanol (87%). The mildness of the method is indicated by the deprotection of the chiral 1,2-propadienyl ether 4

0022-326319211957-1028\$03.00/0 *63* **1992** American Chemical Society

⁽¹⁾ Corey, E. J.; Venkateswarlu, A. *J. Am. Chem. SOC.* **1972, 94,** 6190–6191.

(2) Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic

⁽²⁾ Greene, T. W.; Wuta, P. G. M. *Protective Groups in Organic Synthesis,* **2nd** *ed.;* **John Wiley: New York, 1991; pp 77-83.**

⁽³⁾ (a) Chaudhmy, S. K.; Hernandez, 0. *Tetrahedron Lett.* **1979,20, 99-102. (b) Corey, E. J.; Cho, H.; Rocker, C.; Hua, D. H.** *Tetrahedron Lett.* **1981,22,3455-3468.** *(c)* **Lombardo, L.** *Tetrahedron Lett.* **1984,26, 227-228. (d) Aizpurua, J. M.; Palomo, C.** *Tetrahedron Lett.* **1986,26, 475-476.**

⁽⁴⁾ Newton, R. F.; Reynolds, D. P.; Finch, M. A. W.; Kelly, D. R.; Roberta, *S.* **M.** *Tetrahedron Lett.* **1979,20,3981-3982.**

⁽⁵⁾ The 'H NMR spectrum of TbeH has previously been reported. Barton, T. J.; Tully, C. R. J. *Org. Chem.* **1978,43,3649-3652.**

to form the very acid-sensitive chiral carbinol **S6** in **95%** isolated yield.

The reactivity of Tbs ethers toward **DIBAL-H** at room temperature should be kept in mind when reductions are carried out with this reagent on 0-silylated substrates.'

Experimental Section

The following experimental procedure is representative.

Desilylation of *trans* **-4-tert -Butylcyclohexyl** *tert* **-Butyldimethylsilyl Ether by Diisobutylaluminum Hydride. A solution of 17 mg (0.063 mol) of the Tbs ether of trans-4 tert-butylcyclohexanol in methylene chloride (3 mL) was treated at 0 "C with a 1.0 M solution of diisobutylaluminum hydride in toluene (0.18 mL, 0.18 mol) under nitrcgen with stirring. After** 2 h at 23 °C, 0.5 g of crushed ice was added, and the mixture was **washed with 1 mL of 0.5 M hydrochloric acid. The organic layer was dried (K2COJ, filtered through a** small **plug of silica gel, and concentrated under reduced pressure to give 9 mg of trans-4 tert-butylcyclohexanol (87%) which was identified and shown to be pure by 500-MHz lH NMR and TLC analyses and com**parison with an authentic sample.^{5,7}

Registry No. 1 (R = **hexyl), 80033-60-9; 1 (R** = **benzyl), 21862-63-5; 1 (R = Ph), 18052-27-2; 1 (R = 4-tert-butylcyclohexyl), 71009-16-0; 2,29681-57-0; 4,13765510-8; 5,124563-11-7; hexanol, 111-27-3; phenol, 108-95-2; benzyl alcohol, 100-51-6; diisobutylaluminum hydride, 1191-15-7.**

(6) Corey, E. J.; Yu, C. M.; Lee, D. H. J. *Am. Chem. SOC.* **1990,112, 878-879.**

(7) Support of **this** research by the National Science Foundation is gratefully acknowledged.

Reactions of $\alpha_n\beta$ **-Epoxy Carbonyl Compounds with Methanethiolate: Regioselectivity and Rate**

Ron Bihovsky

Department *of* **Medicinal Chemistry, Berlex Laboratories,** *110* **East Hanover Avenue, Cedar Knolls, New Jersey** *07927*

Received April *19,1991* **(Revised Manuscript Received October** *22,1991)*

Reactions between epoxides and biogenic thiols are biologically important in several respects.¹ Potentially toxic xenobiotic epoxides² and endogenous epoxides³ form adducts with glutathione. Epoxides alkylate active-site cysteine residues of certain enzymes.⁴ Potent enzyme inhibitors, **known** to alkylate cysteine residues, include

Table I. Pseudo-First-Order Rates and Regioselectivitiea in Reactions of CH₃S⁻ with Epoxides (1) at pD 9.84^a

epoxide	R	$k \, (\text{min}^{-1})$	2:3	k_{α} (min ⁻¹)	k_a (min ⁻¹)	
la	COCH,	1.45^b	>95:5	1.45^{b}		
1b	CO ₅ CH ₃	0.44	57:43	0.25	0.19	
1c	CONH ₂	0.166	22:78	0.037	0.13	
1d	CH_2CH_3	0.086	$5:95$		0.086	
1e	CO,-	0.010	36:64	0.0036	0.0064	

^{*a*} Reactions of 1 (0.097 **M**) with CH₃S⁻ (0.0145 **M**) were conducted in D₂O at 19.4 °C. ^bExtrapolated from rate at pD 9.21.

structurally diverse α , β -epoxy carbonyl and related compounds.⁵

Under physiological conditions, the thiolate of cysteine $(pK_a 8.2)$ is actually the significant nucleophile.¹ As a nonpeptidic model, we were therefore interested in the reactivity of α , β -epoxy carbonyl compounds (i.e. $1a-c,e$) toward simple thiolate anions to afford β -hydroxy- α -thio carbonyl compounds (2) and α -hydroxy- β -thio carbonyl compounds (3). A primary question was whether the

carbonyl would increase the reactivity of these epoxides. Although reactions of epoxides⁶ including α , β -epoxy ketones,⁷ α , β -epoxy esters, 2c , β α , β -epoxy carboxylic acids, 9 and α , β -epoxy amides¹⁰ with thiols and (occasionally) thiolates have been **reported,** reaction rates have not been measured and a comprehensive understanding of regioselectivity and relative reactivity does not emerge from the literature due to differences in the reagents, solvents, and temperatures employed. Retro-aldol reactions of the β -hydroxy- α -thio carbonyl regioisomers (i.e. **2) also** complicate comparisons. Catalysis by Lewis acids and mineral acids provides dif-

⁽¹⁾ (a) Friedman, M. *The Chemistry and Biochemistry of the Sulphydryl Group in Amino Acids, Peptides, and Roteins;* Pergamon Preaa: Oxford, **1973.** (b) Jocelyn, P. C. *Biochemistry of the SH Group;* Am-

demic Press: New York, **1972. (2)** (a) Meister, *A,* Andersen, M. E. *Ann. Rev. Biochem.* **1983,52,711.** Jerina, D. M. In *Glutathione: Metabolism and Function;* Arias, I. M., Jakoby, W. B., **Eds.;** Raven Press: New York, **1976;** p **267.** (b) Hernan-Stated, J. R. E., E., E., E., Hetabolic Basis of Detoxication; Jakoby, W. B., dec., O.; Bend, J. R. In Metabolic Basis of Detoxication; Jakoby, W. B., Bend, J. R., Caldwell, J., Eds.; Academic Press: New York, 1982; pp 207

⁽⁴⁾ Vitamin K epoxide reductase: Suttie, J. W.; Preusch, P. C. *Haemostasu,* **1986,16,193.**

⁽⁵⁾ (a) Cerulenin: Funahhi, H.; Iwasaki, S.; **Okuda,** S. *Tetrahedron Lett.* **1983,24, 2673.** (b) Pentalenolactone: Cane, D. E.; **Sohng,** J. K. *Arch. Biochem. Biophys.* **1989,270,50.** (c) Terreic acid and monorden: Sturdik, E.; Drobnica, L.; Sladkova, V.; Krchnava, E. *Biologia* **1983,38, 1229.** (d) **E-64** Yabe, Y.; Guillaume, D.; Rich, D. H. *J. Am. Chem. SOC.* **1988,** 110, 4043. (e) Palmoxirate: Tutwiler, G. F.; Brentzel, H. J.; Kiorpes, T. C. *Proc. Soc. Exp. Biol. Med.* **1985**, 178, 288. (f) Fosfomycin: Kahan, F. M.; Kahan, J. 5.; Caesidy, P. J.; Kropp, H. *Ann. N. Y. Acad. Sei.* **1974, 235,364.**

⁽⁶⁾ Review: (a) Parker, N. E.; Iaaaca, N. S. *Chem. Rev.* **1959,69,737.** (b) Buchanan, J. G.; Sable, H. Z. In Selective Organic Transformations;
Thyagarajan, B. S., Ed.; Wiley: New York, 1972; Vol. 2, p 1. (c) Winstein, S.; Henderson, R. B. In Heterocyclic Compounds; Wiley: New York, **1950;** Vol. **1,** pp **1-59.**

^{(7) (}a) Tishchenko, I. G.; Malashko, P. M. Chem. Heterocycl. Compds.
1966, 2, 357. (b) Schultz, A. G.; Fu, W. Y.; Lucci, R. D.; Kurr, B. G.; Lo, K. M.; Boxer, M. J. Am. Chem. Soc. 1978, 100, 2140. (c) Tishchenko, I.
G.; Ma

Khim. Navuk 1977, 81; Chem. Abstr. 1978, 88, 22294t.

(8) (a) Culvenor, C. C. J.; Davies, W.; Heath, N. S. J. Chem. Soc. 1949,

278. (b) Aberhart, D. J.; Lin, L. J.; Chu, J. Y.-R. J. Chem. Soc., Perkin

Trans. 1 1975, 2517 J.; Muccitelli, R. M.; Hay, D. W.; Tucker, S. S.; Vickery-Clark, **L.** J. *Med. Chem.* **1987,30,959.**

⁽⁹⁾ (a) Hashiyama, T.; Inoue, H.; Konda, M.; Takeda, M. *Chem. Pharm. Bull.* **1986,33,1256** and referenced cited therein. (b) Hirschbein, B. L.; Whitesides, G. M. J. *Am. Chem. SOC.* **1982,104,4458.** (c) *See* ref **5d.**

^{(10) (}a) Chong, M. J.; Sharpless, K. B. J. Org. Chem. 1985, 50, 1563.
(b) Behrens, C. H.; Sharpless, K. B. J. Org. Chem. 1985, 50, 5696. (c)
Tucker, H.; Crook, J. W.; Chesterson, G. J. J. Med. Chem. 1988, 31, 954. (d) See **also** refs **5a** and **5d.**